Mars Curiosity rover finds life-supporting chemicals

This is an archived article and the information in the article may be outdated. Please look at the time stamp on the story to see when it was last updated.

(CNN) — Curious about life on Mars? NASA’s rover Curiosity has now given scientists the strongest evidence to date that the environment on the Red Planet could have supported life billions of years ago.

Since Curiosity made its rock star landing more than a year ago at Gale Crater, the focal point of its mission, the roving laboratory has collected evidence that gives new insights into Mars’ past environment.

NASA scientists announced in March that Mars could have once hosted life — at least, in the distant past, based on the chemical analysis of powder collected from Curiosity’s drill. An area of the crater known as Yellowknife Bay once hosted “slightly salty liquid water,” Michael Meyer, lead scientist for the Mars Exploration Program at NASA headquarters in Washington, said earlier this year.

Six new studies released Monday by the journal Science add more insights about these formerly habitable conditions and provide other new knowledge that increase our understanding of the Red Planet. The results were also presented at the fall meeting of the American Geophysical Union in San Francisco.

Curiosity found evidence of clay formations, or “mudstone,” in Yellowstone Bay, scientists said Monday. Martian mud is a big deal because this clay may have held the key ingredients for life billions of years ago. It means a lake must have existed in this area.

“This is a game changer since these are the kind of materials that are very ‘Earth-like’ and conducive for life,” said Douglas Ming, lead author of one of the new studies.

This ancient environment, where the clay minerals formed, would have been favorable to microbes, Ming told CNN.

Some bacteria on Earth called chemolithoautotrophs could have lived in that kind of environment. These bacteria derive their energy from breaking down rocks and sediments, Ming said, generally by oxidizing elements in the rock.

Ming and colleagues also found hydrogen, oxygen, carbon, nitrogen, sulfur and phosphorus in the sedimentary rocks at Yellowknife Bay, elements that are all critical for life.

The new findings mean the rover’s $2.5 billion mission is “turning the corner,” said John Grotzinger, a California Institute of Technology planetary geologist and chief scientist for Curiosity, also known as the Mars Science Laboratory.

Grotzinger and colleagues found the habitable environment existed later in Martian history than previously thought. By studying physical characteristics of rock layers in and near Yellowknife Bay, they determined that Mars was habitable less than 4 billion years ago — about the same time as the oldest signs we have for life on Earth.

The habitable conditions could have remained for millions to tens of millions of years, with rivers and lakes appearing and disappearing over time.

Curiosity also helped scientists figure out the age of an ancient Martian rock, as described in the new research. The rock is called Cumberland, and it now has the distinction of being the first whose age was measured on another planet through chemical analysis.

The rover used a method for dating Earth rocks that measures the decay of an isotope of potassium as it slowly changes into argon. Scientists determined the rock was between 3.86 billion and 4.56 billion years old. This age range is consistent with earlier estimates for rocks in Gale Crater.

Scientists say roughly 4 billion years ago, the environment on Mars wasn’t much different from that of modern-day Earth. But things on Mars then took a drastic turn, and the planet was dramatically transformed from warm and wet to bitterly cold and dry, scientists say. In addition to the cold and dry conditions, scientists say the No. 1 reason life probably wouldn’t have thrived on Mars is its extremely high levels of radiation.

“The radiation environment on Mars is unlike anything we have on Earth,” said Jennifer Eigenbrode, a biogeochemist and geologist at NASA’s Goddard Space Flight Center and an author of one of the studies. “We don’t know if life on Mars could have ever adapted to the high levels of radiation the surface is currently experiencing.”

Eigenbrode added, “This is a wide-open book, which we have barely started writing the pages of.”

New radiation measurements will also be important to planning any human missions to Mars, scientists said.

“Our measurements also tie into Curiosity’s investigations about habitability,” study co-author Don Hassler of Southwest Research Institute in Boulder, Colorado, said in a statement. “The radiation sources that are concerns for human health also affect microbial survival as well as preservation of organic chemicals.”

Organic chemicals come from a variety of sources, including meteorites and comets, but they can also be indicative of life.

What’s bad for us is bad for signs of life — but these organic chemicals could still be hiding on Mars nonetheless.

By Azadeh Ansari and Elizabeth Landau

™ & © 2013 Cable News Network, Inc., a Time Warner Company. All rights reserved.

1 Comment

  • Ulises jofre

    Then, is there fossils on Mars, life in other planets? But, isn’t the emergence and maintenance of life a process of radical contingency? That is, is a unique and unrepeatable past totally necessary? Or does life emerge through space like mushrooms when some conditions are present? So, how many conditions are necessary: three, four, trillions, infinite? Only one, water or any sort of God? Is God the word that means infinite conditions, absolute necessity? Anyway, how did the life that emerge in a given conditions resist when switching to a different moment? How does life resist time itself, the effects of entropy? But, is it possible for human beings to recognise a simpler life than their own brain only? On the other hand, beyond likeness, is it possible to recognise a complex life than their brain, is this the extra-terrestrial life that some people are searching unsuccessfully? However, is there an origin of life or would it be as finding a cut in the material history of the universe, an infinite void that human language patches now? Is it the same cut between life and death? Along these lines, a serious-funny b-book, a preview in Just another suggestion for mind leisure, far away from dogmas or axioms.

Comments are closed.

Notice: you are using an outdated browser. Microsoft does not recommend using IE as your default browser. Some features on this website, like video and images, might not work properly. For the best experience, please upgrade your browser.